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S. Gratton, S. Gürol and Ph. L. Toint

Report NAXYS-10-2010 10 December 2010

University of Namur
61, rue de Bruxelles, B5000 Namur (Belgium)

http://www.fundp.ac.be/sciences/naxys



Preconditioning and Globalizing Conjugate Gradients in

Dual Space for Quadratically Penalized Nonlinear-Least

Squares Problems

Serge Gratton∗, Selime Gürol† and Philippe Toint‡
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Abstract

When solving nonlinear least-squares problems, it is often useful to regularize the problem
using a quadratic term, a practice which is especially common in applications arising in
inverse calculations. A solution method derived from a trust-region Gauss-Newton algorithm
is analyzed for such applications, where, contrary to the standard algorithm, the least-squares
subproblem solved at each iteration of the method is rewritten as a quadratic minimization
subject to linear equality constraints. This allows the exploitation of duality properties of
the associated linearized problems. This paper considers a recent conjugate-gradient-like
method which performs the quadratic minimization in the dual space and produces, in exact
arithmetic, the same iterates as those produced by a standard conjugate-gradients method in
the primal space. This dual algorithm is computationally interesting whenever the dimension
of the dual space is significantly smaller than that of the primal space, yielding gains in terms of
both memory usage and computational cost. The relation between this dual space solver and
PSAS (Physical-space Statistical Analysis System), another well-known dual space technique
used in data assimilation problems, is explained. The use of an effective preconditioning
technique is proposed and refined convergence bounds derived, which results in a practical
solution method. Finally, stopping rules adequate for a trust-region solver are proposed in
the dual space, providing iterates that are equivalent to those obtained with a Steihaug-Toint
truncated conjugate-gradient method in the primal space.

Keywords: Data assimilation, dual-space minimization, preconditioning, conjugate-gradient meth-

ods, globalization, trust-region methods.

1 Introduction

This paper investigates conjugate-gradients (CG) methods for the solution of under-determined
nonlinear least-squares problems regularized by a quadratic penalty term. Such problems often
result from a maximum likelihood approach, and involve a set of m physical observations and
n unknowns which are estimated by a nonlinear regression. We suppose here that n is large
compared to m. These problems are encountered for instance when tri-dimensional fields are
reconstructed using physical observations, as is the case in data assimilation in Earth observation
systems (Weaver, Vialard and Anderson 2003). In meteorological applications for example, the
result of this minimization procedure is the initial state of a dynamical system, which is then
integrated forward in time to produce a weather forecast.

A widely used algorithm in this context is the truncated Gauss-Newton (TGN) method, known
in the Earth observation community under the name of incremental four dimensional variational
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data assimilation (Incremental 4D-Var) (Courtier, Thépaut and Hollingsworth 1994). The TGN
method relies on the approximate solution of a sequence of linear least-squares problems in which
the nonlinear least-squares cost function is approximated by a quadratic in the neighbourhood of
the current nonlinear iterate. However, it is well-known that this simple variant of the Gauss-
Newton algorithm does not ensure a monotonic decrease of the objective function and that con-
vergence is not guaranteed. Removing this difficulty is typically achieved by using a linesearch
(Dennis and Schnabel 1983) or a trust-region (Conn, Gould and Toint 2000) strategy, which ensures
global convergence to first order critical points under mild assumptions. We consider the second of
these approaches in this paper. Moreover, taking into consideration the large-scale nature of the
problem, we propose here to use a particular trust-region algorithm relying on the Steihaug-Toint
truncated conjugate-gradients method for the approximate solution of the subproblem (Conn et
al. 2000, pp. 133-139).

Solving this subproblem in the n-dimensional space (by CG) is referred to as the primal ap-
proach. Alternatively, a significant reduction in the computational cost is possible by rewriting the
quadratic approximation in the m-dimensional space related to the observations. This is crucial
for the large-scale applications such as those solved daily in weather prediction systems, where
typically n ∼ 107 and m ∼ 105 (Bouttier and Courtier 1999). This approach, which performs
minimization in the m-dimensional space using CG or variants thereof, is referred to as the dual
approach for reasons that will appear clearly in Section 2.

The first proposed dual approach (Courtier 1997), known as the Physical-space Statistical
Analysis System (PSAS) in the data assimilation community, starts by solving the corresponding
dual objective in IRm by a standard preconditioned CG (PCG), and then recovers the step in
IRn using a simple multiplication with an n × m matrix. Technically, the algorithm consists in
recurrence formulas involving m-vectors instead of n-vectors. However, the use of PSAS can be
unduly costly as it was noticed (El Akkroui, Gauthier, Pellerin and Buis 2008) that the linear
least-squares cost function is not monotonically decreasing along the nonlinear iterations when
applying standard termination criteria, and therefore that very conservative such criteria have to
be used, resulting in many inner iterations.

Another dual approach has been proposed by (Gratton and Tshimanga 2009) and is known
as the Restricted Preconditioned Conjugate Gradient (RPCG) method. It generates the same
iterates in exact arithmetic as those generated by the primal approach, again using recursion
formula involving m-vectors. The main interest of RPCG is that it results in significant reduction
of both memory and computational costs while maintaining the desired convergence property, at
variance with the PSAS algorithm. Unfortunately, the relation between these two dual approaches
and the question of deriving efficient preconditioners – essential as soon large-scale problems are
considered – was not addressed in (Gratton and Tshimanga 2009).

The main motivation for this paper is to address these open issues. In particular, we are
interested in designing preconditioning techniques and a trust-region globalization which maintain
the one-to-one correspondance between primal and dual iterates, thereby offering cost-effective
computation in a globally convergent algorithm.

The outline of the paper is as follows. In Section 2, we present the dual approaches in a general
framework and explore the connections between the PSAS and RPCG solvers. We also introduce
practical preconditioners to accelerate the convergence of the latter by taking into account the fact
that a sequence of slowly varying linear least-squares problems are solved in the Gauss-Newton
process near convergence. In particular, a warm-start preconditioner derived from limited memory
quasi-Newton updating formulas (Morales and Nocedal 2000) is proposed in the primal space, and
its variational properties are recalled. A dual space counterpart to this preconditioner is then
derived and its variational properties analyzed. An extension of the Steihaug-Toint truncated
conjugate-gradient method to the dual space is then presented in Section 3. Finally, conclusions
are drawn in Section 4, and perspectives are indicated.
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2 Conjugate Gradients in Dual Space

The nonlinear least-squares problem arising in data assimilation problems is typically formulated
as

min
x0

1

2
‖x0 − xb‖2B−1 +

1

2

Nt∑

j=0

‖Hj(x(tj))− yj‖2R−1

j

, (2.1)

where x0 and xb are n-dimensional vectors representing the initial state of the model at time t0 and
the background vector (an a priori information obtained from previous forecasts), respectively.
The vector y is an m-dimensional vector of observations and Hj is the operator modeling the
observation process. The matrices B and Rj are respectively n×n and m×m symmetric positive
definite covariance matrices corresponding to the background and observation errors. The state
x(tj) at time tj is obtained by integrating an application-specific dynamical system. Therefore,
the objective function (2.1) represents a trade-off between a priori background information and
a misfit between predicted and observed quantities. This approach is motivated by statistical
theory (Tarantola 1987, pp. 24-32) and corresponds to a maximum likelihood approach under a
Gaussian assumption.

We consider a TGN algorithm for solving (2.1), where the nonlinear observation operator
Hj(x(tj)) is linearized at step k in the neighbourhood of xk(tj). At iteration k of this approach,
a step δxk

0 from xk
0 is computed by minimizing the quadratic cost function

min
δxk

0

1

2
‖xk

0 − xb + δxk
0‖2B−1 +

1

2
‖Hkδx

k
0 − d‖2R−1 , (2.2)

where Hk is a m × n matrix denoting the model (linearized at xk
0) concatenated over time and

where d = (yj −Hj(x
k(tj))) denotes the concatenated misfits. The initial state estimation is then

updated according to
xk+1
0 = xk

0 + δxk
0 .

The main loop of TGN, which ranges over successive iterates {xk
0}, is called the “outer-loop”, while

the loop which is implemented whenever an iterative solver is used for the subproblem (2.2) is called
the “inner-loop”. The method we have just described is locally convergent on mildly nonlinear
problems and, as we mentioned earlier, can be made globally convergent by the introduction of a
trust-region mechanism. However, we postpone the discussion of this feature to Section 3 for the
sake of simplicity, and restrict our attention for now on the definition of the subproblem given by
(2.2).

From the optimality condition (Nocedal and Wright 1999, pp. 14-17), the solution of the
subproblem (2.2) is given by

δx0 = xb − x0 + (B−1 +HTR−1H)−1HTR−1(d−H(xb − x0)), (2.3)

where we have dropped the outer-loop index k for simplicity. We now reformulate (2.2) as a convex
quadratic problem with linear equality constraints given by

min
δx0

1

2
‖x0 − xb + δx0‖2B−1 +

1

2
‖v‖2R−1 (2.4)

subject to
v = Hδx0 − d,

which can, in turn, be solved using duality theory. The dual objective for (2.4) (Nocedal and
Wright 1999, p. 349) is given by

q(λ) = inf
δx0,v

L(δx0, v, λ)
def
= inf

δx0,v

1

2
‖x0 − xb + δx0‖2B−1 +

1

2
‖v‖2R−1 − λ(Hδx0 − v − d), (2.5)
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where λ is a Lagrange multiplier. The infimum is achieved when

∇δx0
L(δx0, v, λ) = B−1(x0 + δx0 − xb)−HTλ = 0 (2.6)

∇vL(δx0, v, λ) = R−1v + λ = 0 (2.7)

which yields that

δx0 = xb − x0 +BHTλ (2.8)

v = −Rλ. (2.9)

We may therefore substitute δx0 and v in the expression (2.5) and obtain the dual objective
explicitly as follows:

q(λ) = −1

2
λT (HBHT +R)λ+ λT (d−H(xb − x0)), (2.10)

which is maximized for

λ = (HBHT +R)−1(d−H(xb − x0)). (2.11)

Therefore, from (2.11) and (2.8), the solution of the subproblem (2.2) may also be written as

δx0 = xb − x0 +BHT (HBHT +R)−1(d−H(xb − x0)). (2.12)

Note that this solution may be obtained directly from the solution (2.3) by using the Sherman-
Morrison-Woodbury formula (Nocedal and Wright 1999, pp. 612-613), as done in the original
derivation of the PSAS algorithm.

In the context of interest in this paper, the matrices H, B and R are so large that they can
not be stored explicitly, and the information they contain is only available through matrix-vector
products. It is therefore natural to solve for the linear system in (2.3) using conjugate-gradients,
whose sole access to the system matrix is via such products. We therefore apply this method to
the system

(B−1 +HTR−1H)δv0 = HTR−1(d−H(xb − x0)), (2.13)

where B−1 +HTR−1H matrix is symmetric and positive definite and find δx0 from the relation

δx0 = xb − x0 + δv0. (2.14)

An iterative technique can also be applied in the dual approach, by applying CG in (2.11), which
yields the linear system

(HBHT +R)λ = d−H(xb − x0), (2.15)

and then using the expression (2.8) to recover δx0.
A first alternative for solving the system (2.15) is the PSAS method, which uses PCG with

the canonical inner product in IRm and R−1 as a preconditioner. This gives the preconditioned
system

R−1/2(HBHT +R)R−1/2(R1/2λ) = R−1/2(d−H(xb − x0)), (2.16)

It is known (El Akkroui et al. 2008), (Gratton and Tshimanga 2009) that the PSAS algorithm
produces iterates in the space of Lagrange multipliers, and that their corresponding primal-space
counterparts (given by (2.8)) do not ensure monotonic decrease of the quadratic function (2.2)
along the inner-iterations. It turns out that this quadratic cost has an erratic behaviour, even
on simple examples. Thus, if the iterations are stopped before exact optimality is attained, there
is no guarantee that the value of the quadratic cost has decreased, which may then affect the
convergence of the TGN algorithm.

A better alternative is as follows. The linear system (2.16) can also be rewritten as

(R−1HBHT + Im)λ = R−1(d−H(xb − x0)), (2.17)
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where Im is the identity matrix in dual space. This non-symmetric formulation can be solved by
PCG with a non-standard inner product in which R−1HBHT + Im becomes symmetric. Such
an approach has already been used by several authors, see for instance (Stoll and Wathen 2007)
and (Ashby, Holst, Manteuffel and Saylor 2001). This strategy is also the main idea behind
the RPCG method, where the linear system (2.17) is solved using the HBHT -inner product
in which R−1HBHT + Im is symmetric. Crucially, RPCG provides mathematically equivalent
iterations to that of PCG in primal space (Gratton and Tshimanga 2009). It therefore preserves
the monotonically decreasing nature of the quadratic cost (2.2) along the inner iterations, and is
thus ideal for applying termination criteria allowing for approximate solutions. This feature makes
it preferable to PSAS in our framework.

As usually the case when iterative methods are used, a preconditioner should be introduced in
order to accelerate convergence. It is shown in (Gratton and Tshimanga 2009) that the equivalence
between RPCG and the primal approach still holds if there exists a preconditioner G, dual of the
primal preconditioner P , such that

PHT = BHTG. (2.18)

At first sight, this assumption may appear restrictive, because such a preconditioner G may not
exist, in particular if, for some P , PHT is not included in range of BHT . However, we show in
this paper that the widespread warm-start preconditioning techniques based on limited memory
methods (Tshimanga, Gratton, Weaver and Sartenaer 2008), (Morales and Nocedal 2000) do
satisfy the condition (2.18).

Before stating the RPCG algorithm explicitly, we consider the stopping criteria based on the
energy norm of error within the standard CG and show how they can be implemented in the dual
space without additional cost. The energy norm of error in primal space can be written as

‖δv0 − δvi‖A ≤ η‖δv0‖A (2.19)

or the equivalent criteria in terms of dual norm (Arioli 2004),

‖ri‖A−1 ≤ η‖r0‖A−1 (2.20)

where the linear system under consideration is the system (2.13) in the form of Aδv0 = b and
η < 1. Since the preconditioner P is an approximation to A−1, (2.20) can be approximated by

‖ri‖P ≤ η‖r0‖P . (2.21)

It turns out that this condition may also be equivalently derived in the dual space (i.e. using
m-vectors and the corresponding dual preconditioner G) from the definition r = HT r̂ (Gratton
and Tshimanga 2009) and the relation (2.18), yielding the equivalent condition

‖r̂i‖HBHTG ≤ η‖r̂0‖HBHTG.

This stopping rule is included in our first version of RPCG, which we state as Algorithm 2.1 on
the following page.

This algorithm using the HBHT -inner product is expensive since it requires seven matrix
vector products involving HBHT for each inner loop. Fortunately, it can be rewritten in a much
cheaper form by introducing additional dual-space vectors, reducing its cost per loop to a single
matrix-vector product with HBHT . More precisely, consider w and t defined by

wi = HBHT ẑi and ti = HBHT p̂i. (2.22)

If we multiply lines 8 and 11 of Algorithm 2.1 by HBHT , we obtain that

ti =

{
w0 if i = 1
wi−1 + βiti−1 if i > 1,

which yields the final version of RPCG (Algorithm 2.2) on page 7.
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Algorithm 2.1: PCG Algorithm in Rm (RPCG, version 1)

1 λ0 = 0;
2 r̂0 = R−1(d−H(xb − x0));
3 i = 0;
4 while ‖r̂i‖HBHTG > η‖r̂0‖HBHTG do

5 ẑi = Gr̂i;
6 i = i+ 1;
7 if i = 1 then

8 p̂1 = ẑ0;
9 else

10 βi =< r̂i−1, ẑi−1 >HBHT / < r̂i−2, ẑi−2 >HBHT ;
11 p̂i = ẑi−1 + βip̂i−1;

12 end

13 q̂i = (Im +R−1HBHT )p̂i;
14 αi =< r̂i−1, ẑi−1 >HBHT / < q̂i, p̂i >HBHT ;
15 λi = λi−1 + αip̂i;
16 r̂i = r̂i−1 − αiq̂i;

17 end

18 The solution is recovered from δxi = xb − x0 +BHTλi;

We conclude this presentation of conjugate-gradient-like methods in the dual space by con-
sidering the effect of round-off errors. It is known that round-off errors typically cause loss of
orthogonality between successive residuals (Fisher, Nocedal, Tremolet and Wright 2009), a central
property ensuring fast convergence of the conjugate-gradient methods in exact arithmetic. As a
result the rate of convergence might be substantially deteriorated. A possible cure for this problem
is to consider reorthogonalization of the residuals, either explicitly (Roux 1989) or in the form of
the mathematically equivalent Full-Orthogonalization-Method (FOM) (van der Vorst 2003). It
is remarkable that both these strategies, which may be considered as costly in both space and
time in the primal setting, turn out to be much cheaper on both counts in the dual framework.
This difference is caused by the (typically much) smaller dimension of the residual vectors which
need to be stored and reorthogonalized. As a result, complete reorthogonalization may often be
considered as a viable computational strategy in conjunction with dual-space solvers.

2.1 Quasi Newton Limited Memory Preconditioners

As mentioned in previous section, we are interested in solving the quadratic problem (2.2) using a
variant of conjugate gradients. In practice, this class of method is always associated with suitable
preconditioning techniques in order to improve its convergence rate. Finding a good preconditioner
and computing an approximation to the inverse Hessian are tightly related problems. We consider
here the use of quasi-Newton limited-memory preconditioners (LMPs) (Tschimanga 2007) which
are derived from the inverse Hessian approximations using the Limited Memory BFGS (LBFGS)
updating formula (Morales and Nocedal 2000). Such techniques implicitly build an approximate
inverse Hessian by updating an existing approximation to include curvature information along a
selected subset of the descent directions pk generated in the CG algorithm. In our context, the
initial approximation is the matrix P1 = B, which exploits the fact that the matrix in (2.2) is a
rank m modification of B−1, and we define

Pk+1 = (In − τkpkq
T
k )Pk(In − τkqkp

T
k ) + τkpkp

T
k , (2.23)

where τk = 1/(qTk pk) and qk = (B−1 + HTR−1H)pk. Several strategies have been proposed to
select, within the CG iterations, the l “secant pairs” consisting of descent directions pk and asso-
ciated changes in gradient qk. For instance, the use of the l last pairs is proposed in (Nocedal and
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Algorithm 2.2: RPCG Algorithm

1 λ0 = 0;
2 r̂0 = R−1(d−H(xb − x0));
3 i = 0;

4 while r̂Ti ŵi > η r̂T0 ŵ0 do

5 ẑi = Gr̂i;

6 wi = HBHT ẑi;
7 ti = wi;
8 i = i+ 1;
9 if i = 1 then

10 p̂1 = ẑ0;
11 t1 = w0;

12 else

13 βi = wT
i−1r̂i−1/w

T
i−2r̂i−2;

14 p̂i = ẑi−1 + βip̂i−1;
15 ti = wi−1 + βiti−1;

16 end

17 q̂i = R−1ti + p̂i;

18 αi = wT
i−1r̂i−1/q̂

T
i ti;

19 λi = λi−1 + αip̂i;
20 r̂i = r̂i−1 − αiq̂i;

21 end

22 The solution is recovered from δxi = xb − x0 +BHTλi

Wright 1999, p. 177), while a uniform sampling accross all generated pairs is proposed in (Morales
and Nocedal 2000). A remarkable feature of the update (2.23) is that the matrix ∆Pk defined
by ∆Pk = Pk+1 − Pk is the solution to the following minimization problem (Nocedal and Wright
1999, pp. 139-140):

min
∆Pk

‖W 1/2∆PkW
1/2‖F (2.24)

subject to ∆Pk = ∆PT
k , Pk+1qk = pk, (2.25)

where W is any symmetric positive definite matrix satisfying Wpk = qk.
Note that ‖W 1/2∆PkW

1/2‖F = ‖∆Pk‖W , where ‖·‖W is a weighted Frobenius norm of weight
W . The solution of problem (2.24)-(2.25) can be computed in close form and is given by

∆Pk =
W−1qk(pk − Pkqk)

T + (pk − Pkqk)q
T
k W

−1

qTk W
−1qk

− qTk (pk − Pkqk)W
−1qkq

T
k W

−1

(qTk W
−1qk)2

. (2.26)

Substituting the expression Wpk = qk into (2.26), it can easily be seen that Pk+∆Pk gives (2.23).
May we follow the by now familiar pattern of deriving an equivalent preconditioner in the

dual space? We now show that this is indeed possible and that the resulting formula satisfies
a variational property similar to that described by (2.24)-(2.25). We first focus on deriving a
dual-space preconditioner satisfying (2.18).

Lemma 2.1 Suppose that HBHTG1 = GT
1 HBHT and that p̂k are any linearly independent vec-

tors for k = 1, ..., l and l being the number of stored vectors. Then the matrices Gk+1 defined
by

Gk+1 = (Im − τ̂kp̂k(Mq̂k)
T )Gk(Im − τ̂k q̂kp̂

T
kM) + τ̂kp̂kp̂

T
kM, (2.27)

where M = HBHT , q̂k = (Im + R−1M)p̂k and τ̂k = 1/(q̂Tk Mp̂k) satisfies HBHTGk+1 =
GT

k+1HBHT .
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Suppose also that P1H
T = BHTG1, for instance P1 = B and G1 = Im. If we denote pk =

BHT p̂k and qk = HT q̂k, then the sequence Pk+1 defined by (2.23) and the sequence Gk+1 defined
by (2.27) satisfies Pk+1H

T = BHTGk+1.

Proof. The result is proved in two parts by induction, whose inital steps are true by assumption.
Suppose Gk is such that HBHTGk = GT

kHBHT . Multiplying Gk+1 on the left by HBHT gives

MGk+1 = (Im − τ̂kMp̂kq̂
T
k )MGk(Im − τ̂k q̂kp̂

T
kM) + τ̂kMp̂kp̂

T
kM. (2.28)

Using the symmetry property of Gk in M , we deduce that

MGk+1 = (Im − τ̂kMp̂kq̂
T
k )G

T
kM(Im − τ̂kq̂kp̂

T
kM) + τ̂kMp̂kp̂

T
kM, (2.29)

= [(Im − τ̂kMp̂kq̂
T
k )G

T
k (Im − τ̂kMq̂kp̂

T
k ) + τ̂kMp̂kp̂

T
k ]M, (2.30)

= GT
k+1M. (2.31)

To prove the second part, suppose that Gk is such that PkH
T = BHTGk. Using the relations

pk = BHT p̂k, (2.32)

qk = HT q̂k, (2.33)

from the assumption, formula (2.23) can be rewritten in terms of the vectors p̂k and q̂k in dual
space as follows.

Pk+1 = (In − τ̂kBHT p̂k q̂
T
k H)Pk(In − τ̂kH

T q̂kp̂
T
kHB) + τ̂kBHT p̂kp̂

T
kHB,

where τ̂k = 1/(q̂Tk HBHT p̂k). Multiplying both sides on the right by HT gives that

Pk+1H
T = (In − τ̂kBHT p̂k q̂

T
k H)Pk(H

T − τ̂kH
T q̂kp̂

T
kHBHT ) + τ̂kBHT p̂kp̂

T
kHBHT

= (In − τ̂kBHT p̂k q̂
T
k H)PkH

T (Im − τ̂k q̂kp̂
T
kHBHT ) + τ̂kBHT p̂kp̂

T
kHBHT .

Using the relation PkH
T = BHTGk, we deduce that

Pk+1H
T = (In − τ̂kBHT p̂k q̂

T
k H)BHTGk(Im − τ̂k q̂kp̂

T
kHBHT ) + τ̂kBHT p̂kp̂

T
kHBHT

= (BHT − τ̂kBHT p̂kq̂
T
k HBHT )Gk(Im − τ̂kq̂kp̂

T
kHBHT ) + τ̂kBHT p̂kp̂

T
kHBHT

and factoring BHT on the left of this expression yields that

Pk+1H
T = BHT [(Im − τ̂kp̂kq̂

T
k HBHT )Gk(Im − τ̂kq̂kp̂

T
kHBHT ) + τ̂kp̂kp̂

T
kHBHT ],

from which it can be seen that the formula for Gk+1 given by (2.27) satisfies Pk+1H
T = BHTGk+1.

2

Note that, in this Lemma if the vectors pk and p̂k are chosen as the search directions from
CG in primal space and accordingly that of from Algorithm (2.2), the relations (2.32) and (2.33)
naturally hold (Gratton and Tshimanga 2009). Also, since P is a symmetric positive definite
preconditioner and HPHT = HBHTG, we have that when H has full row rank, the matrix
HBHTG is not only symmetric but also positive definite which makes G a symmetric and positive
definite preconditioner with respect to the HBHT inner product.

We now show that the preconditioner G obtained from Lemma 2.1 also satisfies variational
properties in the dual space equipped with the HBHT -inner product.

Lemma 2.2 Let M = HBHT . Then the matrix ∆Gk defined by ∆Gk = Gk+1 −Gk where Gk+1

defined in (2.27) is the solution of

min
∆Gk

∥∥∥W 1/2M1/2∆GkM
−1/2W 1/2

∥∥∥
F

(2.34)

subject to M∆Gk = ∆GT
kM, Gk+1q̂k = p̂k,

where W is any symmetric positive definite matrix satisfying WM1/2p̂k = M1/2q̂k.
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Proof. Using the change of variables

∆Xk = M1/2∆GkM
−1/2, p̂k = M−1/2sk and q̂k = M−1/2yk (2.35)

we can rewrite problem (2.34) as

min
∆Xk

∥∥∥W 1/2∆XkW
1/2
∥∥∥
F

subject to ∆Xk = ∆XT
k , Xk+1yk = sk,

which is structurally identical to problem (2.24). Using now (2.26) in this context yields that

∆Xk =
W−1yk(sk −Xkyk)

T + (sk −Xkyk)y
T
k W

−1

yTk W
−1yk

− yTk (sk −Xkyk)W
−1yky

T
k W

−1

(yTk W
−1yk)2

. (2.36)

Substituting (2.35) into this solution and multiplying by M1/2 on the right and M−1/2 on the left
gives that

∆Gk =
M−1/2W−1M1/2q̂k(M

1/2p̂k −M1/2Gk q̂k)
TM1/2 + (p̂k −Gk q̂k)q̂

T
k M

1/2W−1M1/2

q̂Tk M
1/2W−1M1/2q̂k

− M−1/2q̂Tk M
1/2(M1/2p̂k −M1/2Gk q̂k)W

−1M1/2q̂kq̂
T
k M

1/2W−1M1/2

(q̂Tk M
1/2W−1M1/2q̂k)2

.

From the relation WM1/2p̂k = M1/2q̂k, we deduce that M
1/2p̂k = W−1M1/2q̂k. Substituting this

expression in the solution and adding Gk then gives (2.27), as desired. 2

Having found a suitable preconditioner (in the sense that it satisfies (2.18)) and having verified
that it shares desirable variational properties with its primal equivalent, we are left with the task
of integrating it into the RPCG algorithm. From formula (2.27), we need to store the sequences of
q̂, p̂, Mp̂, and Mq̂ to obtain the successive preconditioner updates. Storing q̂, p̂ and Mp̂ does not
require additional cost since they are already available from a run of Algorithm 2.2 with same H,
R and B. On the other hand, the quantity Mq̂ is not a by-product of the algorithm, and seems,
at first sight, to require an additional matrix vector product, which may appear computationally
costly. Fortunately, under the same assumption on H, R and B, we can rewrite Algorithm 2.2 in
a more computationally effective way by introducing a vector l defined by

li = HBHT r̂i.

Since ẑi = Gr̂i and HBHTG is symmetric from the Lemma (2.1), we may therefore write that

wi = HBHTGr̂i = GTHBHT r̂i = GT li. (2.37)

Moreover, multiplying line 20 of Algorithm 2.2 by HBHT gives that

HBHT q̂i = (li−1 − li)/αi

which is the matrix vector product Mq̂ that we need to store. Using all these relations, we can
transform Algorithm 2.2 into Algorithm 2.3 on the following page.

2.2 Convergence Properties

After defining our dual-space preconditioner, we now consider bounds on its efficiency and com-
pare it to those that can be derived for its primal-space equivalent. For this purpose, we start
by recalling known properties of the preconditioned conjugate-gradient method. This method
implicitly computes the coefficients of the polynomial P∗

k(PA) that solves the minimization prob-
lem (Axelsson 1996, p. 560)

min
Pk

‖(Pk(PA)PA+ In)δv0‖2A , (2.38)
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Algorithm 2.3: RPCG Algorithm with quasi-Newton Preconditioner

1 λ0 = 0;
2 r̂0 = R−1(d−H(xb − x0));
3 i = 0;

4 while r̂Ti ŵi > ηr̂T0 ŵ0 do

5 li = HBHT r̂i;
6 ẑi = Gr̂i;

7 wi = GT li;
8 ti = wi;
9 i = i+ 1;

10 if i = 1 then

11 p̂1 = ẑ0;
12 t1 = w0;

13 else

14 βi = wT
i−1r̂i−1/w

T
i−2r̂i−2;

15 p̂i = ẑi−1 + βip̂i−1;
16 ti = wi−1 + βiti−1;

17 end

18 q̂i = R−1ti + p̂i;

19 αi = wT
i−1r̂i−1/q̂

T
i ti;

20 λi = λi−1 + αip̂i;
21 r̂i = r̂i−1 − αiq̂i;
22 ̺i = (li−1 − li)/αi;

23 end

24 The solution is recovered from δxi = xb − x0 +BHTλi

where A = B−1 + HTR−1H is a symmetric positive definite matrix, P is a symmetric positive
definite preconditioner, δv0 is the solution of the linear system (2.13) in primal space and Pk is a
polynomial defined by

Pk(PA) = a0I + a1PA+ ...+ ak(PA)k.

If PA has eigenvalues µ1 ≤ µ2 ≤ ... ≤ µn, the PCG algorithm (Golub and Van Loan 1989, p. 534)
with zero initial starting vector ensures the inequality

‖δvk+1 − δv0‖A ≤ 2(

√
µn −√

µ1√
µn +

√
µ1

)k ‖δv0‖A (2.39)

(see (Conn et al. 2000, p. 89), for instance). Note that, when RPCG is used, the iterates all belong
to the affine subspace Im(BHT ). This information can be taken into account to obtain a better
bound on the convergence rate of both RPCG and its PCG primal equivalent, as shown in the
next lemma.

Lemma 2.3 Suppose that G is a preconditioner satisfying (2.18). If G(Im + R−1HBHT ) has
eigenvalues ν1 ≤ ν2 ≤ ... ≤ νm, then the RPCG Algorithm 2.3 and its primal equivalent ensure
the inequality

‖δvk+1 − δv0‖A ≤ 2(

√
νm −√

ν1√
νm +

√
ν1

)k ‖δv0‖A ≤ 2(

√
µn −√

µ1√
µn +

√
µ1

)k ‖δv0‖A . (2.40)

Proof. From (2.14) and (2.8) the solution of the linear system (2.13) can be written as
δv0 = BHTλ, where λ is the solution of the linear system (2.15) given by (2.11). Substituting this
form for the solution in the objective function of (2.38) then yields the new form

∥∥∥∥∥

(
k∑

i=0

ai (PA)i+1BHT +BHT

)
λ

∥∥∥∥∥

2

A
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and this objective is minimized over all choices of the coefficients {ai}ki=1. Using the fact that

(B−1 +HTR−1H)BHT = HT (Im +R−1HBHT ), which we can simply write as ABHT = HT Â,
we obtain that our objective may now be written as

∥∥∥∥∥

(
k∑

i=0

ai (PA)iPHT Â+BHT

)
λ

∥∥∥∥∥

2

A

Using the equality (2.18), we obtain the further form

∥∥∥∥∥

(
k∑

i=0

ai (PA)iBHTGÂ+BHT

)
λ

∥∥∥∥∥

2

A

.

Substituting the term ABHT with HT Â and using (2.18) then yields an objective of the form

∥∥∥∥∥

(
BHT

k∑

i=0

ai (GÂ)i+1 + Im

)
λ

∥∥∥∥∥

2

A

=
∥∥∥BHT (Pk(GÂ)GÂ+ Im)λ

∥∥∥
2

A

=
∥∥∥(Pk(GÂ)GÂ+ Im)λ

∥∥∥
2

HBABHT

=
∥∥∥(Pk(GÂ)GÂ+ Im)λ

∥∥∥
2

HBHT Â
(2.41)

Performing the change of variables Ã = HBHT Â and P̃ = G(HBHT )−1 in (2.41), we may write
the minimization problem in dual space as:

min
Pk

∥∥∥(Pk(P̃ Ã)P̃ Ã+ Im)λ
∥∥∥
2

Ã
(2.42)

Using the relation (2.18), we then write (HBHT )−1HFHT (HBHT )−1 = G(HBHT )−1 which

shows that the matrix P̃ is symmetric positive definite. On the other hand, Ã = HBHT Â =
HBHT +HBHTR−1HBHT is also a symmetric positive definite matrix. Therefore, from (2.38)

and (2.39), if P̃ Ã has eigenvalues ν1 ≤ ν2 ≤ ... ≤ νm, the RPCG Algorithm 2.3 ensures the
inequality

‖λk+1 − λ‖Ã ≤ 2(

√
νn −√

ν1√
νn +

√
ν1

)k ‖λ‖Ã . (2.43)

One also has that
‖λ‖HBHT Â = ‖λ‖HBABHT =

∥∥BHTλ
∥∥
A
= ‖δx0‖A . (2.44)

Finally, substituting Ã with HBHT Â and P̃ with G(HBHT )−1 in P̃ Ã, and then this quantity in
(2.43) and using the relation (2.44) proves the first part of the inequality (2.40).

For the second part of the inequality, we start from the equality ABHT = HT Â. If we multiply
both sides of this equality from the left by P , we obtain PABHT = PHT Â and using the equality
(2.18), we deduce that PABHT = BHTGÂ. This equality tells us that BHT spans an invariant

subspace of PA, from which we may deduce that every eigenvalue of GÂ is an eigenvalue of PA.
So, µ1 ≤ ν1 and µn > νn, which completes the proof. 2

This result shows that the condition number of PA is generally worse than that of GÃ and we
now show that it can be arbitrarily worse. For example, taking B as the identity matrix, R is a
diagonal matrix, HT = [I 0], G = (Im+R−1HHT )−1 and P = [G 0; 0 diag(ξ, 1)] we easily verify
that (2.18) holds. Then the diagonal preconditioned system matrices are

PA = diag(ai) where ai = 1 for 1 ≤ i ≤ m and ai = ξ for i > m,

GÂ = diag(ai) where ai = 1 for 1 ≤ i ≤ m.
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We conclude that PA is ill-conditioned with a condition number of 1/ξ whereas GÂ has a condition
number of 1, meaning that the convergence takes place in one iteration both in dual and primal
spaces. Therefore, for a given preconditioner G in dual space, we can find a preconditioner P in
primal space satisfying the relation (2.18) that is arbitrarily ill-conditioned, showing the relevance
of the bound (2.40) in terms of the ν’s.

3 The Steihaug-Toint Truncated Conjugate Gradient

Method in Dual Space

When using the simple Gauss-Newton approach described at the beginning of Section 2 for more
than mildly non-linear cost functions, the iterations can unfortunately diverge, and the function
value can increase with the Gauss-Newton step computed from (2.2), see for instance (Kelley
1999, p. 39). This problem is not purely theoretical, and is also discussed in a real life problem in
(Tshimanga et al. 2008), where the necessity for global minimization is emphasized. As indicated
above, global convergence can be ensured by inserting the Gauss-Newton strategy in a trust-region
framework. For data assimilation problem, trust-region methods amount to solving approximately
a sequence of quadratic problems

min
δxk

0

1

2

∥∥δxk
0 + x0 − xb

∥∥2
B−1

+
1

2

∥∥Hkδx
k
0 − d

∥∥2
R−1

(3.1)

subject to ‖δxk
0‖P−1

k
≤ ∆k, (3.2)

where ∆k is the radius of the “trust region”, which is the region where we believe that the objective
function (2.1) of our nonlinear problem is adequately approximated by that of (3.1). It is important
to note that preconditioning appears in this problem as the norm ‖ · ‖P−1

k
used in (3.2).

After solving this subproblem, the step δxk
0 is accepted or rejected and the trust region radius is

updated accordingly. The acceptance of the trial point and trust region radius update are decided
by considering the ratio

ρk =
f(xk

0)− f(xk
0 + δxk

0)

mk(xk
0)−mk(xk

0 + δxk
0)

where f is the objective function (2.1) and mk is its quadratic approximation (3.1). This ratio
of achieved to predicted reductions gives an indication of the model’s quality. If it is larger than
some small constant, the step is accepted and the trust-region radius possibly enlarged, while, if
it is too small or negative, the step is rejected and the trust-region radius decreased. We refer the
reader to (Conn et al. 2000, p. 116) for a more complete description.

For large scale instances, the subproblem (3.1)-(3.2) is solved approximately using the Steihaug-
Toint truncated conjugate-gradient technique (Conn et al. 2000, p. 205), where the model (3.1) is
approximately minimized using PCG until the boundary of the trust region (3.2) is encountered.
More specifically, (dropping again the outer-iterations index k for simplicity) three different cases
may occur when applying PCG to (3.1) (Conn et al. 2000, pp. 202-204):

1. the curvature 〈pi, Api〉 remains positive at each inner iteration, and the PCG iterates remain
inside the trust region (the standard PCG stopping rule (2.21) then applies);

2. the curvature 〈pi, Api〉 remains positive at each inner iteration, and the PCG iterates leave
the trust region, in which case the iterates are stopped when the trust region boundary is
met;

3. the curvature 〈pi, Api〉 is negative at some PCG step, in which case, the associated descent
direction is followed until the trust region boundary is met.
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This strategy can be shown to yield a sufficient decrease condition (Nocedal and Wright 1999,
p. 33) which guarantees global convergence of the iterates. Note that, since the curvature is
always positive in our study, we consider the first and second situations only.

Again the same question arises: may we derive an equivalent dual-space version of this method?
In particular, how easy is it to compute a final iterate on the boundary of the trust region following
a descent direction form a given inner iterate? For answering these questions, we start by rewriting
the Steihaug-Toint algorithm described in (Conn et al. 2000, p. 205) in terms of the vectors in dual
space, using the relations (Gratton and Tshimanga 2009) ri = HT r̂i, pi = BHT p̂i, δvi = BHTλi,
zi = BHT ẑi, qi = HT q̂i and the equality PHT = BHTG where G is the preconditioner in dual
space. This gives a first version of the Steihaug-Toint truncated conjugate gradient algorithm
(Algorithm 3.1) in dual space.

Algorithm 3.1: The Steihaug-Toint truncated CG method in dual space (version 1)

1 λ0 = 0;
2 r̂0 = R−1(d−H(xb − x0));
3 i = 0;
4 while ‖r̂i‖HBHTG > η‖r̂0‖HBHTG do

5 ẑi = Gr̂i;
6 i = i+ 1;
7 if i = 1 then

8 p̂1 = ẑ0;
9 else

10 βi =< r̂i−1, ẑi−1 >HBHT / < r̂i−2, ẑi−2 >HBHT ;
11 p̂i = ẑi−1 + βip̂i−1;

12 end

13 q̂i = (R−1HBHT + Im)p̂i;
14 αi = 〈r̂i−1, ẑi−1〉HBHT /〈p̂i, q̂i〉HBHT ;
15 if ‖λi + αip̂i‖HBHTG−1 > ∆ then

16 compute αi as the positive root of ‖λi + αip̂i‖HBHTG−1 = ∆;
17 λi = λi−1 + αip̂i ;
18 return;

19 end

20 λi = λi−1 + αip̂i;
21 r̂i = r̂i−1 − αiq̂i;

22 end

23 The solution is recovered from δxi = xb − x0 +BHTλi

As before, this version of the algorithm turns out to be very expensive in terms of HBHT

matrix-vector products, and we introduce new vectors to transform it into a computationally
efficient method. From

‖λi + αip̂i‖2HBHTG−1 = ‖λi‖2HBHTG−1 + 2α〈λi, HBHTG−1p̂i〉+ α2‖p̂i‖2HBHTG−1 ,

the positive root of ‖λi + αip̂i‖2HBHTG−1 = ∆ is given by

αi =
−〈λi, HBHTG−1p̂i〉+

√
〈λi, HBHTG−1p̂i〉2 + ‖p̂i‖2HBHTG−1

(
∆2 − ‖λi‖2HBHTG−1

)

‖p̂i‖2HBHTG−1

Consider now the vectors yi, vi and si defined by

yi = HBHTλi, vi = G−1λi and si = G−1p̂i.

If we multiply line 8 and 11 of the Algorithm 3.1 by G−1 we obtain that

si =

{
r̂0 if i = 1
r̂i−1 + βisi−1 if i > 1,
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and line 1 and 20 by HBHT and G−1 we obtain that

yi =

{
0 if i = 1
yi−1 + αiti if i > 1,

vi =

{
0 if i = 1
vi−1 + αisi if i > 1,

where ti is given by (2.22). We may now use these new vectors to calculate αi , which yields

αi =
−yTi si +

√
(yTi si)

2 + tTi si(∆
2 − yTi vi)

tTi si
. (3.3)

Introducing this change, we now obtain Algorithm 3.2 on the next page. This last version requires
a single HBHT matrix-vector product in each inner loop.

This is the algorithm which we recommend for solving truly nonlinear instances of our original
problem (2.1) when m ≪ n.

4 Conclusions

Inverse problems where an n-vector is estimated using physical observations are very common
in the simulation of complex systems. Important applications abound in environmental sciences
like meteorology or oceanography, where the estimated vector is the initial state of a dynamical
system which is integrated in time to produce a forecast. Our work concentrates on the situation
where the estimation process results in a nonlinear least squares problem, in which there are much
fewer observations than variables to be estimated, and where a quadratic regularization term has
therefore to be introduced in order to guarantee uniqueness of the solution. We consider a solution
method based on a truncated Gauss-Newton technique, made globally convergent with a trust-
region strategy. The sequence of linear least-squares problems involved in the method is iteratively
solved by a conjugate-gradients method, appropriately truncated by the Steihaug-Toint strategy,
and which is accelerated by limited memory preconditioners.

It has been recently shown that it is possible to use duality theory and rewrite the linear
least-squares solver into an equivalent algorithm (in exact arithmetic) in which all vectors of the
short-term recurrences are represented by vectors of dimension m, m being the number of physical
observations. Two proposed dual approaches, called PSAS and RPCG, are shown to differ in the
way they define the scalar product in the dual space. It is also argued that the RPCG method is
preferable to PSAS because it maintains the convergence properties of the initial Gauss-Newton
process.

In this paper, we take a further step in making the RPCG dual solver relevant to practice
for large scale, nonlinear problems. This is done by introducing an adequate preconditioner and
an efficient implementation of the Steihaug-Toint truncation of CG in the dual space. All these
techniques are implemented in such a way that RPCG and the primal approach generate the same
sequence of iterates and keep the number of matrix-vector products in the CG algorithm constant.
A further advantage of the proposed dual approach in the common situation where m ≪ n, is
that storing vectors for the preconditioner or performing re-orthogonalization is computationally
much cheaper than with standard primal algorithms, making any of these techniques applicable
in realistic cases.

There are many open issues worth further exploration. A first important issue is the devel-
opment of other preconditioners in the dual space, like the Ritz preconditioner (Tshimanga et al.
2008) which proved efficient in data assimilation for oceanography. It could also be interesting to
further explore globalization strategies by developping algorithms that are similar in spirit to the
Moré-Sorensen (Conn et al. 2000, Section 7.3) approach, or by considering techniques based on
cubic regularization (Cartis, Gould and Toint 2009).
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Algorithm 3.2: The Steihaug-Toint truncated CG method in dual space

1 λ0 = 0;
2 r̂0 = R−1(d−H(xb − x0));
3 i = 0;

4 while r̂Ti ŵi > ηr̂T0 ŵ0 do

5 li = HBHT r̂i;
6 ẑi = Gr̂i;

7 wi = GT li;
8 ti = wi;
9 i = i+ 1;

10 if i = 1 then

11 p̂1 = ẑ0;
12 t1 = w0;
13 s1 = r̂0;
14 y1 = 0;
15 v1 = 0;

16 else

17 βi = wT
i−1r̂i−1/w

T
i−2r̂i−2;

18 yi = yi−1 + αiti;
19 p̂i = ẑi−1 + βip̂i−1;
20 ti = wi−1 + βiti−1;
21 vi = vi−1 + αisi;
22 si = r̂i−1 + βisi−1;

23 end

24 q̂i = R−1ti + p̂i;

25 αi = wT
i−1r̂i−1/q̂

T
i ti;

26 γ =
√
yTi vi + 2αyTi si + α2tTi si;

27 if γ > ∆ then

28 Calculate αi from the formula (3.3);
29 λi = λi−1 + αip̂i ;
30 return ;

31 end

32 λi = λi−1 + αip̂i;
33 r̂i = r̂i−1 − αiq̂i;
34 ̺i = (li−1 − li)/αi;

35 end

36 The solution is recovered from δxi = xb − x0 +BHTλi
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