Complexity in social dynamics : from the micro to the macro Laboratory $\mathbf{4}$

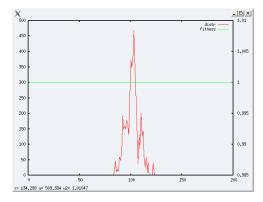
Franco Bagnoli Namur 7-18/4/2008

1 Laboratory 4

Evolution and game theory

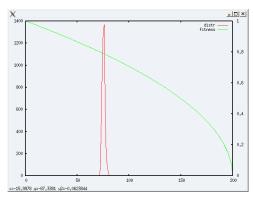
- 1. Evolution on a flat landscape: mutations.
- 2. Evolution on a smooth fitness landscape: quasispecies and the Red Queen.
- 3. Evolution of a sharp landscape: the error threshold.
- 4. Niches and coexistence in firmess landscapes.
- 5. Competition: a stabilizing force.
- 6. Evolution of cooperation: direct reciprocity.

Evolutionary models

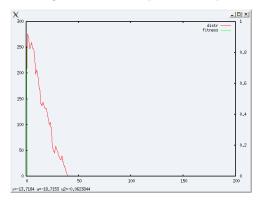

- \bullet An individual is modeled as a vector of L genes (that take value 0 and 1).
- The phenotype f is just the sum of the genes $(0 \le f \le L)$.
- The firness is a function of the phenotype and the phenotype distribution of other individuals (for competition).
- For modeling an evolutionary population (fixed size:quasispecies.f90), we just compare the fitness of two individuals. That with lower fitness tends to disappear, replaced by a copy of the opponent, with eveltual mutations.

```
quasispecies.f90 -
module fit
contains
 function pheno(g)
    integer ::pheno
    integer*1 :: g(:)
    integer :: L,i
    L = size(g)
    pheno = 0
    do i=1,L
     pheno = pheno + g(i)
    end do
  end function
  function fitness(f, fd)
    implicit none
    real :: fitness
    integer :: f ! phenotype
    integer :: fd(0:) ! phenotype distribution
    integer :: LL, i
    real :: d,h
    integer :: NN
    LL = size(fd)
    LL = LL-1
    NN = sum(fd)
    !fitness=1 ! neutral evolution
    ! a sharp-peaked landscape
```

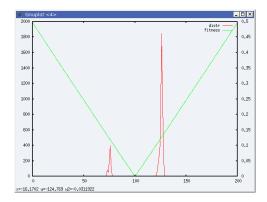
```
!if (f == 0) then
    ! fitness = 1
    !else
    ! fitness = 0
    !end if
    ! smooth landscape
    !fitness = (real(LL-f)/LL)**.1
    ! smooth landscape
   fitness = abs(real(LL/2-f)/LL)**1.01
   !competition
     h = 0
     do i=0,LL
        d = abs(i-f) ! phenotypic distance
!
       h = h - 1*fd(i)*exp(-.01*d)/NN
      end do
      fitness = exp(h)
  end function
end module
program quasispecies
 use fit
  implicit none
 integer, parameter :: N=5000 !population size
  integer, parameter :: L=200 ! genome size
  integer :: i, j, k,kk, t
 integer :: TMAX=10000
 integer*1 :: x(N,L) !population
 real :: A(N) ! fitness
  integer :: f(N) ! phenotype
  integer :: fd(0:L) ! phenotype distribution
 real :: r , AA
 real :: mu=0.0001 !mutation prob per gene
  real :: Temp=0.1
  character*200 :: str
  call random_seed()
  !initialization
  fd = 0
  do i=1, N
   do j=1, L
     call random_number(r)
     x(i,j) = floor(r+0.5)
    end do
    !x(i,:) = 0
   f(i) = pheno(x(i,:))
   fd(f(i)) = fd(f(i))+1
   end do
  ! compute fitness
  do i=1, N
   A(i) = fitness(f(i), fd)
  end do
  call gnuplotOpen("gnuplot")
```


```
call gnuplotExecute("set term x11; set mouse;"//&
      "set ytics nomirror; set y2tics")
  ! evolution
 do t=1, TMAX
   do kk=1, N ! a MonteCarlo step
      ! pick two individuals at random
     call random_number(r)
     i = floor(r*N)+1
     call random_number(r)
     j = floor(r*N)+1
      ! selection
      call random_number(r)
      if (r < 1/(1+exp((A(i)-A(j))/Temp))) then
       k=i; i=j; j=k ! exchange i and j
      end if
      ! i duplicates into j
      fd(f(j)) = fd(f(j)) -1 ! remove j
      ! clone i into j
     x(j,:) = x(i,:)
      !mutations: up to 1 mutation at random
      call random_number(r)
      if (r< mu*L) then
        call random_number(r)
       k = floor(r*L)+1
       x(j,k) = 1-x(j,k)
      end if
      ! compute phenotype and fitness
      f(j) = pheno(x(j,:))
     fd(f(j)) = fd(f(j)) +1
     A(j) = fitness(f(j), fd)
    end do
   AA = sum(A)/N ! average fitness
   print *, AA
   !plot
    call gnuplotExecute("plot '-' t 'distr' w 1, "//&
        "'-' axis x1y2 t 'fitness' w 1")
   do i=0,L
     write(str, *) i, fd(i)
      call gnuplotExecute(str)
   call gnuplotExecute("end")
   do i=0,L
     write(str, *) i, fitness(i, fd)
     call gnuplotExecute(str)
   call gnuplotExecute("end")
   call gnuplotFlush()
 end do
end program
```

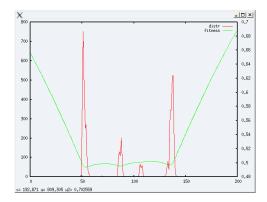
- Witout selection (flat fitness landscape), mutations (random drift) tend to favor the intermediate phenotype (0.5). The asymptotic distribution approximates a binomial one.
- Notice that for a genome length L sufficiently high, the binomial distibution is so sharp that, for finite populations, the expreme values (say, genotype $0, 0, 0, \ldots$ never appear.


Evolution on smooth landscapes

- In smooth landscapes, there is a competition between fitness (order) and mutations (disorder).
- you can try to explore the relationship between fitness shape, mutations and position and width
 of quasispecies.


Evolution on sharp landscapes: error threshold

- For a sharp landscape and finite populations, the asymptotic population is a quasispecies centered around the master sequence (here the sequence $0, 0, \ldots$
- it may happen that the master sequence is lost.
- Since the fitness landscape is flat (except for the master sequence), the evolution is here just a random search of a point in a high-dimensional space: no hope of finding it.


Speciation and coexistence on smooth landscapes

- The allopatric speciation theory identifies speciations with the "discovering" of niches.
- Since niches (fitness maxima) are separated by valleys, one needs "hopeful monsters" that accumulates mutations. This is easier for smaller populations, and therefore in isolated islands.
- However, coexistence is fragile: random fluctuations may bring species into extinction.

Competition

- Competition arises when one individual uses some resource correlated to its phenotype (example: seeds of a diameter related to its beak size).
- In principle, one should simulates at least two species (a prey and a predator), but we can use an "effective" competition term.
- In the presence of competition, more species can occupy the same niche, even is random drift "pushes" phnotypes towards the internediate one.

Evolutionary game theory

- In evolutionary game theory, the fitness landscape is replaced by direct integractions among individuals.
- We simulate here the evolution of cooperation by direct reciprocity (cooperation.f90). A population composed by TIT-FOR-TAT (0) and ALL-D (1) strategies is engagen in an round-robin tornament, and accumulate payoff.
- After that, selection takes part, as in quasispecies.f90.

```
_{-} cooperation.f90 _{-}
```

```
program cooperation
  implicit none
  integer, parameter :: N=200 !population size
  integer :: i, j,ii, k,kk, t, ll
  integer :: TMAX=10
  integer*1 :: x(N) !population 1=tit for tat, 2=allD
 real :: A(N) ! fitness:average payoff
 real :: r , AA, xx
 real :: Temp=0.001 !selection temperature
 real :: w = 0.5 ! end tournament probability
 character*200 :: str
 real :: payoff(0:1,0:1)
 integer :: D1, D2, DD1
 real :: b = 5 ! benefit
 real :: c = 2.5 ! cost
 real :: length, ww
 real :: x0=.01 ! initial fraction of defectors
  payoff(0,0) = b-c ! CC cooperation
 payoff(0,1) = -c ! CD
 payoff(1,0) = b ! DC exploitation
 payoff(1,1) = 0 ! DD
  call random_seed()
  !initialization
  do i=1, N
   call random_number(r)
   x(i)=floor(r+x0)
  end do
 xx = 0
  do i=1, N
   xx = xx + x(i)
  end do
  xx = xx/N
  print *, "initially x=", xx
  ! evolution
  do t=1, TMAX
   A = 0
   length=0
   do k=1, N
     do kk=1, N ! complete tournament
        ! pick opponent at random
        !call random_number(r)
        !j = floor(r*N)+1
        i = k
        j = kk
        ! first deal of TFT is cooperate, ALLD always defects
       D1 = x(i)
       D2 = x(j)
        A(i) = A(i) + payoff(D1,D2)
        A(j) = A(j) + payoff(D2,D1)
```

```
11 = 1
ļ
         print *, "----"
!
         print *, 11,")", i, "(", x(i), ") plays ",d1, " and scores ", payoff(D1,D2)
!
         print *, "vs ", j, "(", x(j), ") plays ",d2, " and scores ", payoff(D2,D1)
        do while (.true.)
          call random_number(r)
          if (r < w) exit !end tournament
          11 = 11 + 1
          if (x(i) == 0) then
            {\tt DD1} = {\tt D2} ! TFT repeats last move of opponent
          else
            DD1 = 1
          end if
          if (x(j) == 0) then
           D2 = D1
          else
            D2 = 1
          end if
          D1 = DD1
          print *, ll,")", i, "(", x(i), ") plays ",d1, " and scores ", payoff(D1,D2)
          print *, "vs ", j, "(", x(j), ") plays ",d2, " and scores ", payoff(D2,D1)
         A(i) = A(i) + payoff(D1,D2)
          A(j) = A(j) + payoff(D2,D1)
        end do
        length=length + 11
      end do
   end do
   length = length / N**2
   ww=1/length
    ! selection
   do k=1, N
     i = k
      ! pick an opponent at random
      call random_number(r)
      j = floor(r*N)+1
!
      print *, i, a(i), "vs ", j, a(j)
      ! and select
      call random_number(r)
      if (r < 1/(1+exp((A(i)-A(j))/Temp))) then
        ii=i; i=j; j=ii ! exchange i and j
      end if
      print *, i, x(i), " wins ", j, x(j)
      ! clone i into j
     x(j) = x(i)
   end do
   AA = sum(A) / N
   xx = 0
   do i=1, N
     xx = xx + x(i)
    print *, t,xx/N, c/b, ww, ww/(2-ww),ww/(3-2*ww)
 end do
 print *, "after ", tmax, "rounds, x=",xx/N," c/b=", c/b, &  
     "; ESS (w)=", ww, "; RD (w/(2-w))=", ww/(2-ww),&
     "; AD (w/(3-2w))=", ww/(3-2*ww)
```

end program			

Direct reciprocity

- Depending on the ration c/b of cost with respect to benefit, and the expected number of rounds 1/w, TIT-FOR-TAT (TFT) may be evolutionary stable (ESS: canot be invaded by a single mutant, but can be invaded by a large grupp of defeaters), robust (RD: a random initial condition with a mall majority of TFF leads to an homogeneous population) or advantageous (AD: even in small population, a fraction of mutatns larger than 1/N cannot overcome).
- Try to compare the results with the mean-field approximation by Novak.